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Executive summary

The present deliverable is the collection of the tests conducted in the Work Package 2 frame of the 
ICARIA project. Throughout the previous tasks, Work Package 2 is dedicated to modelling, analysing, 
and evaluating the likelihoods of different climate and weather-driven hazards, their interactions as 
the triggering, and the consequences of combined or compound hazards. 

Therefore, the objective of the deliverable is to create and conduct simulations to test new or not 
consolidated methods and tools for hazard assessment developed in the previous tasks of the same 
work package. The selection of the tests takes into account the three regions under study of the 
project as well as the selected hazards that affect them. These are assigned where the consortium 
does not have a strong background in order to detect possible barriers or gaps and to minimise them 
for implementation in the Trials and Minitrials. 

The test carried out in this task are:

A. Application of the Heat Wave hazard model to the Barcelona Metropolitan Area case study

B. Application of the Extreme wind hazard model to the Salzburg Region case study

C. Application of the Drought hazard model to the South Aegean Region case study

D. Evaluation of the joint probability of occurrence of multi-hazard events for the Trial scenarios 
of the three case studies

E. Integration of Heat Wave hazard with the impact models on the electricity sector

F. Implementation of compound event hazard, Wildfire and Drought, to the South Aegean Region 
case study

The first three tests (A, B, and C) analyse single hazard models. The results of test A get, throughout 
the Heat Wave maps and applying the SOLWEIG model, the Urban Heat Island temperatures and the 
recognition of the hot and cold spots of the region. Test B analyses the scarcity of the observational 
wind gust data, which may lead to high uncertainties for the extreme wind hazard models. Test C 
bases the classification of the Drought periods on the SPI variable and gives the frequency 
distribution for the historical and future scenarios. Test D is focused on the joint probability 
distribution of occurrence of multiple hazards consecutively and simultaneously, providing the return 
period of happening for several multiple hazards and their case study region. In another case, Test E 
analyses the interaction of the hazard with the electric sector and computes its possible impacts. Test 
F results are the statistical analysis of the events under study (Wildfire and Drought) occurring 
simultaneously by checking if the indicators of both hazards exceed the threshold.   
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1 Introduction to project ICARIA

The number of climate-related disasters has been progressively increasing in the last two decades 
and this trend could be drastically exacerbated in the medium- and long-term  horizons according to 
climate change projections. It is estimated that, between 2000 and 2019, 7,348 natural hazard-related 
disasters have occurred worldwide, causing 2.97 trillion US$ losses and affecting 4 billion people 
(UNDRR, 2020). These numbers represent a sharp increase of the number of recorded disaster events 
in comparison with the previous twenty years. Much of this increase is due to a significant rise in the 
number of climate-related disasters (heatwaves, droughts, flooding, etc.), including compound events, 
whose frequency is dramatically increasing because of the effects of climate change and the related 
global warming. In the future, by mid-century, the world stands to lose around 10% of total economic 
value from climate change if temperature increase stays on the current trajectory, and both the Paris 
Agreement and 2050 net-zero emissions targets are not met.

In this framework, Project ICARIA has the overall objective to promote the definition and the 
use of a comprehensive asset level modeling framework to achieve a better understanding 
about climate related impacts produced by complex, compound and cascading disasters and 
the possible risk reduction provided by suitable, sustainable and cost-effective adaptation 
solutions.

This project will be especially devoted to critical assets and infrastructures that are 
susceptible to climate change, in a sense that its local effects can result in significant 
increases in cost of potential losses for unplanned outages and failures, as well as 
maintenance – unless an effort is undertaken in making these assets more resilient. ICARIA 
aims to understand how future climate might affect life-cycle costs of these assets in the 
coming decades and to ensure that, where possible, investments in terms of adaptation 
measures are made up front to face these changes.  

To achieve this aim, ICARIA has identified 7 Strategic Subobjectives (SSO), each one related to one or 
several work packages. They have been classified according to different categories: scientific, 
corresponding to research activities for advances beyond the state of the art (SSO1, SSO2, SSO3, 
SSO4, SO5); technological, suggesting and/or developing novel solutions, integrating state-of-the art 
and digital advances (SSO6); societal, contributing to improved dialogue, awareness, cooperation and 
community engagement as highlighted by the European Climate Pact (SSO7); and related to 
dissemination and exploitation, aimed at sharing ICARIA results to a broader audience and number of 
regions and communities to maximise project impact (SSO7).

● SSO1.- Achievement of a comprehensive methodology to assess climate related risk produced 
by complex, cascading and compound disasters

● SSO2.- Obtaining tailored scenarios for the case studies regions
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● SSO3.- Quantify uncertainty and manage data gaps through model input requirements and 
innovative methods

● SSO4.- Increase the knowledge on climate related disasters (including interactions between 
compound events and cascading effects) by developing and implementing advanced modeling 
for multi-hazard assessment

● SSO5.- Better assessment of holistic resilience and climate-related impacts for current and 
future scenarios

● SSO6.- Better decision taking for cost-efficient adaptation solutions by developing a Decision 
Support System (DSS) to compare adaptation solutions

● SSO7.- Ensure the use and impact of the ICARIA outputs
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2 Objectives and context of the deliverable

Work Package 2 (WP2), entitled "Multi-hazard modelling and assessment," focuses on the 
methodologies and tools used to model multi-hazard scenarios. Figure 1 shows the variety of hazards, 
risk receptors, and cascading effects considered in the three regions studied.

Figure 1. Summary of hazards and risk receptors considered in the different CS of ICARIA.

This deliverable, D2.5 “WP2 lab: testing of methods and tools,” contains the developments and results 
of task 2.4, which is the last task in WP2 and tests the methods and tools developed in WP2. The 
previous tasks in WP2 consisted of outlining the conceptual and methodological basis for hazard risk 
assessment (D2.1), detailing mathematical approaches and models for quantifying the joint 
probabilities of compound multi-hazard events (D2.2), and defining an adaptable framework for 
simulating various compound hazard events (D2.3). These deliverables included descriptions of main 
hazards, analyses of their interactions, examples of recent extreme events, types of compound events 
to be modelled, and guidelines for selecting input parameters and coupling tools for multi-hazard 
assessment. 

Therefore, D2.5 aims to test the outcomes of the previous hazard for ease of their implementation in 
both trials and mini-trials by identifying potential barriers or gaps in advance. Strategies and 
countermeasures are devised to address these identified challenges and setbacks effectively. The 
implementation process is facilitated by providing guidance and support to project stakeholders. 
Additionally, recommendations are suggested to enhance the replicability of the case study or other 
related studies in subsequent work packages. Finally, improvements and refinements to tested 
methodologies are advised for ongoing enhancement and optimization.
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In order to do it, six specific tests are proposed for execution in this task to achieve its objectives. The 
aim of all tests is to encompass all dimensions of the work conducted within WP2 across the three 
case studies. Consequently, each Case Study (CS) is represented in at least two tests. Additionally, 
the three preliminary tasks of the work package are also implemented. Table 1 serves as a compilation 
of all items subjected to testing.

Table 1. List of tests conducted in the task.

Test Issue CS
Partners 
involved

A Application of the Heat Wave hazard model to the AMB CS AMB AQUA, AMB

B Application of the Extreme wind hazard model to the SLZ CS SLZ AIT

C Application of the Drought hazard model to the SAR CS SAR DMKTS

D Evaluation of the joint probability of occurrence of 
multi-hazard events for the Trial scenarios of the 3 CS 3 CS UNEXE + 3CS

E Integration of hazard models with the impact models on the 
electricity sector AMB IREC, AQUA, 

AMB

F Assess compound hazards event (Wildfire + Drought) to the 
SAR CS SAR DMKTS

The deliverable conducts the majority of the tests separately for two reasons. Firstly, to allow each 
contributor to focus specifically on a particular task in order to identify its challenges and detail 
possible improvements, as mentioned previously. Secondly, this approach facilitates parallel testing. 
The short timeframe of the deliverable makes it challenging to generate tests where one depends on 
another. 
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3 Methodology followed

The methodology employed for each of the six tests conducted in Task 2.5 follows a systematic and 
structured approach. It begins with a clear delineation of the test's objectives and boundaries, 
followed by the implementation of the designated hazard model or tool within the specified case 
study region. Subsequently, the obtained results adequacy and alignment with the project needs are 
assessed. Any discrepancies or errors encountered during the process are meticulously identified, and 
considered to propose enhancements or modifications to improve the applicability of the tested 
developments. Figure 2 depicts this process. 

Figure 2. Scheme of the test development in Task 2.5.

Activities done in each step of the test are as follows:

1. Scope definition

Definition of the objectives and scope of each test. Specifying the hazard model or tool being 
implemented, the case study region involved and the desired outcomes.

2. Model/tool implementation

Actual implementation of the chosen hazard model or tool within the designated case study 
region. This involves setting up the necessary parameters, running simulations and/or 
performing assessments and generating relevant data.

3. Results adequacy assessment

Evaluation of the adequacy of the results obtained from the implementation phase. Assess 
whether the outcomes align with the predefined objectives and if they provide meaningful 
insights into the resilience and risk factors considered.

4. Gaps and errors identification

Identify any shortcomings, gaps or errors encountered during the implementation or 
assessment stages. This may include discrepancies between expected and actual results, 
limitations in data availability or quality, or technical issues with the models or tools used.

5. Possible improvements definition

Propose potential enhancements or modifications to be applied to the tested methods or tools 
to address the identified gaps and errors. This could involve refining parameters, updating 
algorithms, incorporating additional data sources, or improving the usability of the tools for 
stakeholders.

Section 4 presents the implementation of this testing methodologies to the cases presented in Table 
1.
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4 Test developed 

4.1 Test A: Heat island hazard model to the AMB CS

4.1.1 Summary and objectives of Test A
The objective of Test A has been focussed on analysing the effect of rising temperatures and heat 
waves on the Urban Heat Island (UHI) phenomenon in the AMB. Based on these analyses and other 
relevant information about the territory and AMB population, the final objective is to create a model in 
selected critical or special interest areas.

To develop the Heat Island Hazard model in the AMB, the SOLWEIG model (Lindberg, 2008) has been 
selected. SOLWEIG is a radiation model that simulates the spatial variations of 3D radiation fluxes and 
Mean Radiant Temperature (Tmrt) in complex urban environments. The model requires a limited 
number of inputs, such as direct, diffuse and global shortwave radiation, air temperature, relative 
humidity, urban geometry and geographical information. 

The large size of the AMB requires a very large computational effort to be able to apply a model such 
as SOLWEIG to its full extent. The amount of information that needs to be prepared and processed 
makes it unfeasible within the limits of the project. That is why first of all, as part of the test, a study 
has been carried out to analyse the state of the AMB territory in UHI terms, taking Land Surface 
Temperature (LST) as a reference parameter. 

In order to prioritise and select areas of interest for the model application, a vulnerability index is 
implemented and, once the study area has been selected, the model is applied as the final phase of 
the test on one of them.

Table 2. Test A summary.

Test A summary

Tested tool Heat island model Test responsible AQUATEC

Developer of the 
tool AQUATEC CS of the test AMB

4.1.2 Activities of Test A
To analyse UHI effect in the AMB and apply the Heat Island model, the following activities have been 
carried out:

● In first place, a preliminary study of the UHI phenomenon in the AMB and definition of the 
study months. 

● Extension of the HW phenomenon and identification of peri-urban cold areas (MODIS 
night-time LST). 
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● Identification of urban areas with a higher impact of UHI. Climate and Landsat 8 analysis. 
● Vulnerability index and critical areas selection. The vulnerability index based on different 

social and urban factors, will identify the most vulnerable areas to heat island effects. This 
index will be cross-referenced with the most affected areas by UHI.  

● Finally a Climate modelling (Urban Heat Island Model) will be implemented in selected critical 
areas.

Remote sensing and climate analysis. 

● Preliminary analysis and critical period determination of the UHI phenomenon. 

Dataset Used: MODIS data set - MOD11A1.061 Terra, Land Surface Temperature (LST) and 
Emissivity Daily Global. 1km resolution. 

This dataset provides daily data of night-time surface temperature (LST_Night_1km band) with 
a 1000m resolution. Three years have been selected with a 10-year interval starting from the 
last complete year (2023, 2013 and 2003) to carry out a temporal analysis of the annual 
night-time LST, and identify the highest surface temperatures in order to define the critical 
periods (summer months) susceptible of being affected by UHI. In addition, these results have 
been processed with a Geographical Information System (GIS) to cross reference them with 
land use information from SIOSE (Information System on Land Occupation in Spain, integrated 
into the National Territory Observation Plan) and finally, to establish the spatial extension of 
the UHI (hot areas/urban zones) and location and distribution of the cold areas that will serve 
as a reference for subsequent calculations.

● Critical area identification: UHI and Heat Waves. 

Dataset Used: Landsat 8 dataset USGS Landsat 8 Level 2, Collection 2, Tier 1 (Thermal band 
resolution: 30m, revisit period: about one every two weeks). 

The effect of the UHI phenomenon is enhanced during Heat Waves (HW) (Ward, et al., 2016; He, 
et al., 2020; Posegga, et al., 2020; Zhao, et al.,2018). In order to identify the years with the 
highest number of heat waves and the greatest amplitude (number of days), a study has been 
carried out, considering the AEMET (Agencia Estatal de Meteorología) definition of HW and 
using the daily maximum temperature data collected from the official stations distributed in 
the AMB. 

The Landsat 8 dataset has been used for a more accurate analysis of the day LST in urban 
territory, under the methodology for calculating LST, UHI index (Normalised Urban Heat Island 
Index) and UTFVI  (Urban Thermal Field Variation Index) established by Waleed et al. (2021) for 
Google Earth Engine (GEE). In this case, a mask for clouds, cloud-generated shadows and pixel 
quality has been applied. After filtering and selection of images for each period, the LST has 
been calculated by selecting the band ‘ST_B10’, based on these data, the UTFVI and UHI have 
been also calculated. UTFVI is used for the evaluation of the UHI effect considering the 
ecological aspects of the city (Renard, F. et al., 2019). The calculation formula is as follows:  
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𝑈𝑇𝐹𝑉𝐼 =  𝐿𝑆𝑇 − 𝐿𝑆𝑇𝑚𝑒𝑎𝑛(𝑎𝑜𝑖)/𝐿𝑆𝑇     (𝐸𝑞.  1)

where LST is the temperature associated with the pixel and LSTmean(aoi) is the average 
temperature of the area of interest. The UHI, Normalised Urban Heat Island Index:

𝑈𝐻𝐼 =  (𝐿𝑆𝑇 − 𝐿𝑆𝑇𝑚𝑒𝑎𝑛(𝑎𝑜𝑖))/𝑠𝑡𝑑𝐿𝑆𝑇     (𝐸𝑞.  2)

where LST is the Land Surface Temperature of the pixel, LSTmean(aoi) the mean LST of the 
study area and stdLST the standard deviation of the LST of the pixel. These operations apply 
for selected years, calculating it for the whole year, the summer period and HW period with the 
highest number of days. 

● Green areas identification (Climate shelters). Green areas in urban planning play a major 
role in climate change mitigation. They are considered climate shelters providing thermal 
comfort to the population in extreme temperature events and having a temperature-reducing 
effect in the surroundings. External climate shelters are green spaces with a surface area > 
0.5 ha and an Normalised Difference Vegetation Index (NDVI) > 0.4, based on the definition of 
the Barcelona Climate Shelter Network (Ajuntament de Barcelona, 2019). The NDVI is an index 
of photosynthetically active biomass. The calculation formula is:

𝑁𝐷𝑉𝐼 =  (𝑁𝐼𝑅 − 𝑅𝑒𝑑) / (𝑁𝐼𝑅 +  𝑅𝑒𝑑)     (𝐸𝑞.  3)

where NIR is the Near Infrared band (B8) and Red is the red band (B4). The surface considered 
has an NDVI value >0.4 and crossed with the SIOSE land use layer reclassified on the land 
uses that will be applied in SOLWEIG model (paved, buildings, evergreen trees, deciduous 
trees, Grass surfaces, bare soil and water) to establish the spatial extent of green areas.

Vulnerability index and critical area selection 

The social, economic and habitability conditions of under-resourced people increase the risks and 
makes them even more vulnerable to the rise in urban temperatures, with excessive heat leading to 
increased mortality and morbidity. In order to identify and map the population particularly vulnerable 
to high temperatures, a vulnerability index has been developed. The methodology implemented is 
based on different parameters disaggregated into census sections, which are classified according to 
the risk magnitude. These parameters are: 

● Social: (i) People under 16 years old; (ii) People over 65 years old, (iii) Population density, (iv) 
Average gross income per household. Data source: Instituto de Estadística de Cataluña 
(IDESCAT). 

● Households: (i) Year of construction; (ii) Energy efficiency. Data source: URBAN3R, Open Data 
Platform to promote urban regeneration in Spain (Ministerio de Transporte, Movilidad y Agenda 
Urbana, 2023).

● Urban: (i) Existing green areas smaller than 0,5 ha. Data source: Sistema de Información sobre 
Ocupación del Suelo de España (SIOSE).

After identifying these vulnerable areas, the information is crossed with the high temperature zones 
analysed by remote sensing described above. The result of this analysis gives us the critical areas  
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that have a greater exposure to high temperature risks, which are the object of analysis for the climate 
model. 

Climate modelling: Urban Heat Island Model 

For the development of microclimatic studies on the impact of solar radiation and temperature on 
environmental health in the identified critical areas of the AMB, the SOLWEIG model (SOlar and 
LongWave Environmental Irradiance Geometry model) has been implemented.

SOLWEIG is a model which can be used to estimate spatial variations of 3D radiation fluxes and mean 
radiant temperature (Tmrt) in complex urban settings. The SOLWEIG model follows the same approach 
commonly adopted to observe Tmrt (as used by Höppe (1992)), with shortwave and longwave radiation 
fluxes from six directions being individually calculated to derive Tmrt. The model requires a limited 
number of inputs, such as direct, diffuse and global shortwave radiation, air temperature, relative 
humidity, urban geometry and geographical information (latitude, longitude and elevation). Additional 
vegetation and ground cover information can also be used to improve the estimation of Tmrt. Figure 3 
outlines a flowchart of the SOLWEIG model.

Figure 3. Flowchart of SOLWEIG model applied.

There are two categories of data needed to run SOLWEIG. The first category is the spatial information, 
outlined in Table 3. The second is meteorological data and other settings such as environmental and 
human exposure parameters.
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Table 3. Spatial data needed and processed to run SOLWEIG, data correction required and identified  
challenges so far.

Spatial data Description Data source Data correction required Challenges

Building and 
Ground 
Digital 
Surface 
Model (DSM)

A DSM consisting of 
ground and building 
heights. This dataset 
also determines the 
latitude and longitude 
used for the 
calculation of Sun 
position. Shape cover.

National cadastre. 
National Geographic 
Information Center  
(CNIG). 

To integrate the heights of 
the buildings, the number of 
storeys of each building has 
been multiplied by 3m. The 
heights obtained are 
corrected with LIDAR 
processed information.

It has been detected that the 
cadastre coverages have some 
errors that will have to be 
corrected manually for each 
critical area studied.
Higher resolution DSMs should be 
employed to improve analysis.

Vegetation 
Canopy 
DSM

A DSM consisting of 
pixels with vegetation 
heights above ground. 

LIDAR mapping 
database processed 
with vegetation 
identification 
(CNIG).

The data have been classified 
from heights of 3 metres to 
identify trees and exclude 
other vegetal cover.
For this coverage it is 
parameterised by including 
other variables: 
Transmissivity of Light 
Through Vegetation (3%) or 
Percent of Canopy Height 
(25%), which can acquire 
default values.

Contains classification errors that 
need to be corrected. Look for 
alternative sources of vegetation 
for digitisation, e.g. tree 
inventories with height, canopy 
size, etc.

Land use 
cover 
scheme

Land cover grid with 
different kinds of uses 
and their 
environmental 
parameterization such 
as albedo and 
emissivity of ground.

Information System 
on Land Occupation 
in Spain (SIOSE)

Reclassification of land use 
classes to those required in 
SOLWEIG.

Reclassification of land uses with 
higher spatial resolution (it is 
recommended to use the SIOSE 
data source by performing a 
reclassification of the types as 
required in SOLWEIG).

Mandatory requirement relating to meteorological data is that it needs to be a continuous file or 
specific momentary values, which allows for the selection of long complete periods or periods related 
to extreme episodes of heat waves.

The variables required for SOLWEIG are air temperature [degC], relative humidity [%] and incoming 
shortwave radiation [W m-2]. To calculate the Physiological Equivalent Temperature (PET) and 
Universal Thermal Comfort Index (UTCI), wind speed data is required.

In the implementation of the model, the EPW files available from the El Prat - Barcelona Meteorological 
Station have been used. This data source requires specific treatment to update the data to the last 
years of the study period and the identification of hot hours.

The analysis of climate scenarios will be implemented on this meteorological information dataset.

D2.5 - WP2 lab: testing of methods and tools                                                                                                          17



The SOLWEIG model allows studying thermal stress in the city and its influence on human health, by 
calculating indices such as PET and UTCI. These indices will allow to evaluate the risks derived from 
heat waves on human health.

4.1.3 Results of Test A
Remote sensing and climate analysis. 

To have a broad time perspective, three years have been taken as reference, with an interval of 10 
years between these. An analysis of the variation of the territorial average of nighttime LST during the 
year is carried out to identify the study period, in which the heat island phenomenon is most intense 
(Figure 4.).

Figure 4.  Daily average of Modis night-time LST for 2003, 2013 and 2023. Options evaluated for 
critical period selection: Blue mark June-Agost, red mark: July-September).

Figure 5 shows the annual average Modis nighttime LST for three selected years: 2003, 2013 and 
2023. 
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Figure 5. Spatial distribution of annual LST night-time average in 2003, 2013 and 2023.

Furthermore, these analyses have been used to delimit the HW extension, identifying periurban cold 
areas (Figure 6). 

Figure 6. Hot and cool areas identification. 2023 Summer average of Modis night-time LST 1000m. 

As a result of the climate analysis, the years with the highest number of heatwaves (HW) and longest 
duration were selected to perform this part of the test. It allows studying LST behaviour during heat 
waves. In order to carry out a more accurate analysis with higher spatial resolution of daytime LST in 
urban territory, UTFI and UH index are calculated using Landsat dataset. These indexes are calculated 
for the whole 3 years chosen, summer period and the largest HW period for each year.  Table 4 
summarises the main results extracted from the LST analysis to different time scales shown in Figure 
7. 
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Table 4. Main results of daytime LST analisis to different time scales (year, summer [sum] and largest 
heat wave period [HW] ) performed for 2018, 2019, 2022 and 2023.

2018 2019 2022 2023

Time period year sum hw year sum hw year sum hw year sum hw

Start date 01-01 01-06 30-07 01-01 01-06 26-06 01-01 01-06 28-07 01-01 01-06 20-08

End date
31–12 

(+1)
31-08

(+1)
09-08 

(+1)
31-12 

(+1)
31-08 

(+1)
30-06 

(+1)
31-12 

(+1)
31-08 

(+1)
14-08 

(+1)
31-12 

(+1)
31-08 

(+1)
25-08 

(+1)

Heat wave 
length

- - 11 - - 5 - - 18 - - 5

Mean LST 
AMB

26.70 41.48 46.53 27.61 40.62 43.87 30.63 44.51 43.98 30.57 41.84 42.84

Std LST 
AMB

4.10 4.70 4.82 3.52 4.12 3.92 3.29 4.25 4.42 3.84 4.46 3.56

Min LST 
AMB

15.12 28.03 9.86 18.49 27.22 25.14 19.07 29.32 28.81 19.29 28.47 30.11

Máx LST 
AMB

36.23 50.49 58.13 35.53 49.84 52.31 39.1 56.29 55.03 38.10 49.21 49.22

Mean LST 
Coolest 
urban areas 
during 
nighttime

27.75 44.61 47.89 29.59 41.51 45.72 32.17 46.78 46.16 33.00 43.99 45.23

D2.5 - WP2 lab: testing of methods and tools                                                                                                          20



Figure 7. Landsat 8 LST average, UTFVI and UHI normalised index. Selected dates: Critical heat waves 
periods since 2013, summer period and year. Image collection USGS Landsat 8 Level 2, Collection 2, 

Tier 1 data set (about 10 am). Spatial resolution for thermal bands: 30m.

Vulnerability index and critical area selection 

A vulnerability index is created with social, economic and urban data, which allows us to identify 
urban areas with high vulnerability to high temperature risks derived from the UHI. By putting together 
these results with the mean Landsat 8 LST explained above, it is possible to do a first approach to the 
selection of critical areas (areas with greater exposure to risks from high temperature), which are used 
for the climatic model. 
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Figure 8 shows the mean summer Landsat 8 LST in 2023 disaggregated into census sections (and a 
list of the municipalities with the highest LST) and an example of a first approach to the selection of a 
critical  area.

Figure 8. Mean summer Landsat 8 LST disaggregated into census sections in 2023 and an example of 
critical areas. 

Climate modelling: Urban Heat Island Model 

Figure 9 shows an example of implementing the SOLWEIG model in a critical area. This example has 
been carried out in Sants Station (Estación de Sants).
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Figure 9. Simplified process of implementing the SOLWEIG model in a critical area of ​​the city of 
Barcelona (Estación de Sants).

This test has provided a better understanding of climate impacts on heat island effect on AMB, the 
influence of heat waves on LST in urban areas and how the population may be affected across the 
territory. The test allowed a first approximation to be made in order to define the most critical areas 
within the AMB, identifying most affected spots and the most vulnerable population. Finally a 
practical example of SOLWEIGH model application has been carried out in one of these areas. 

Some barriers were faced in carrying out this test. According to the definition of UHI, it is necessary to 
evaluate night temperatures, when the cooling is greatest in rural areas and the temperature 
difference between urban centres and the surroundings is largest. Remote sensing images make it 
possible to analyse this effect on the territory without intensive sensor deployments. The 
impossibility of using high resolution night-time images has led to use Landsat satellite images, 
which are daytime images but with a sufficient resolution to assess with wider detail the impact in 
urban areas and analyses the variation in temperature between neighbourhoods, the effect of 
industrial parks, the river, green areas within the city, ect. Landsat datasets are frequently used in 
recent years (Febrian, 2024; Halder et al., 2022; Hidalgo, 2021; Rees et al., 2024; Yuan et al., 2023) and 
have become in a very effective tool to evaluate this phenomenon due to the availability of a large 
number of data in large periods of time.

Another obstacle faced has been the data search for the vulnerability analysis. It has been complex to 
find all the necessary data disaggregated by the same territorial unit and from the most current time 
period possible. Socioeconomic parameters for which there is data by census section in the AMB have 
been selected. Ideally, up-to-date information would be available, but the most recent data from 
official sources  in common for these parameters are from 2021.
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In terms of the application of the climate model, there have been identified several barriers for further 
work. These barriers are related to the input data, as detailed processing and treatment of the 
required information layers, as some errors have been identified (listed in table 3). 

Regarding the climate data for the model, a specific climate file is required that includes, among 
others, radiation data with hourly definition, this aspect is still to be worked on and refined.

Finally, due to the large computational effort and the processing of large amounts of data for the 
application of the model, it is necessary to further refine the critical areas. The criteria of the 
administration and the managers of the AMB should be used to select the areas of greatest interest in 
the application of the modelling within the critical areas. It will make the project more meaningful.
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4.2 Test B Extreme wind hazard model to the SLZ CS

4.2.1 Summary and objectives of Test B
The objective of Test B has been focused on a first analysis of wind hazard models to be applied for 
Salzburg, as wind storms present a challenge to the region with respect to:

● damage of the protective forest
● forestry
● impact of fallen trees on the electrical infrastructure 
● impact of fallen trees on the effectiveness of the flooding protection. 

Even though the hazard wind storm has been clearly identified within the 1st CoP meeting at Salzburg, 
correctly representing wind within climate models poses a challenge - especially when focusing on 
wind gusts rather than mean wind speed. 

Climate model projections have been performed within ICARIA using two methods (statistical, and 
dynamical, see D1.2) to produce state of the art high resolution meteorological conditions with respect 
to wind projections. Both methodologies face different challenges:

● statistical: wind observations are only rarely available (e.g. 2 wind vs 44 temperature 
observations), thus limiting the information needed for statistical downscaling; the spatial 
resolution of global climate models (~100 km x 100 km) doesn’t allow them to represent local 
features that impact wind speed (e.g. orography, roughness length) and therefore aren’t suited 
for providing local wind gust information. 

● dynamical: if not defined differently, the hourly output values correspond to instantaneous 
values and don’t represent the maximum value that occurred within the last hour. If the 
maximum value is needed, either an additional output parameter is activated or different 
post-processing methods exist. Within ICARIA two different models have been used, with one 
providing the maximum wind gusts, whereas the other needed a special set-up, which was 
activated only for the climate projections, but not the historical runs.

Based on the challenges regarding wind hazard modelling, the objectives of the test are (i) to 
understand the barriers available as well as potential solutions, (ii) the analysis of past events to 
understand the importance of wind direction. 

Table 5. Test B summary.

Test B summary

Tested tool Extreme wind hazard 
data Test responsible AIT

Developer of the 
tool AIT, FIC CS of the test SLZ
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4.2.2 Activities of Test B
Within this test, different aspects regarding wind hazards have been considered:

● First analysis of available data for improved understanding of capability to represent gusts
● Review on methodologies to improve wind gust predictions (focusing on dynamical model 

output)
● CoP meeting to clarify impact and characteristics of wind storms

4.2.3 Results of Test B
Analysis of available data for improved understanding of capability to represent gusts

Concerning the statistical downscaling, wind gusts have been computed as output parameter based 
on available observation stations. However, as wind measurements are not available at all stations and 
wind gusts are difficult to measure (sometimes are even replaced by maximum mean wind due to this 
factor), this added to the complexity of the situations producing severe winds coupled with the 
importance of local characteristics such as orography, results in the uncertainty being much higher 
than for instance temperature evolution and a good density of observations is thus desirable. 
Regarding this downscaling, it seems as if wind gusts will weaken for the future climate conditions 
compared to past observations. However, Salzburg is a topographic area which is only partly resolved 
by the global climate models used as input, and only 2 observations are available in this regard here 
for the statistical downscaling. Therefore, the reliability of this data set is questionable - not due to 
the methodology applied, but due to the available data that is needed for statistical downscaling. 

Regarding the dynamical downscaling, wind gusts also pose a challenge. Within the Climate 
Limited-area Modelling (CLM), the maximum wind gusts occurring hourly are output for past and future 
periods, allowing the direct validation towards past events and analysis of future development. 
However, for the Weather Research & Forecasting Model (WRF) only the mean wind is available for 
past and future periods, due to a namelist setting error for the past period. Apart from not having the 
requested output parameter for both models for the whole time period, additional challenges are:

● Observation data for validation: the used CHELSA data set (Karger et al., 2022, 2017) doesn’t 
provide the parameter wind or wind gusts, therefore, observations will be used (same as for 
statistical downscaling) and for the years 2011 - 2014 also the INCA data set (Haiden et al., 
2011)  will be used to compare to past simulations. INCA starts 2011 and the model simulations 
driven with ERA5 are performed until 2014. 

● Impact of local features on wind gusts is very strong, thus the capability of the models (WRF, 5 
x 5 km, CCLM 2x2km spatial resolution) depends on the correctly used static input data and 
the methodology to compute wind gusts within the models. Further, extreme wind gusts often 
occur in combination with convective precipitation events, which also pose challenges in 
modelling.

To address these challenges, an in-depth comparison of the available model output data for past as 
well as future periods will be done (i) concerning maximum wind speed events for the past - compared 
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to available observations and INCA data, (ii) maximum occurring wind speeds during different climate 
states and future periods 

CoP meeting to clarify impact and characteristics of wind storms

Within the second CoP meeting in Salzburg, the representatives defined hazardous wind 
characteristics stating that wind speeds > 90 km/h cause light damage, >120 km/h medium damage 
and >150 km/h severe damage. Furthermore, regarding the impact on forests, the importance of wind 
direction was stated as the mountain valleys are impacted differently by the same wind speeds with 
slightly different wind directions. 

This information is crucial but poses another challenge since wind direction close to the surface is 
strongly impacted by surface and local conditions which are difficult to capture within climate models. 

Review on methodologies to improve wind gust predictions

Within Stucki et al. (2017) four different post-processing methods for dynamical model output to 
retrieve wind gusts based on mean wind was performed, indicating that different methodologies exist. 
Within this study, the parameterizations used within WRF and CLM were applied, as well as two 
additional ones: the so-called Brasseur wind gust parameterization which is physics based and one 
using a constant multiplication factor which is based on observations. All four wind gust 
parameterizations display comparable errors compared to wind gust observations, indicating that 
even a very simplified one (multiplication of constant factor) might be applicable in case the constant 
is well defined. As 10 min wind (gust) observations are available for the Salzburg region from 1992 
onwards, a regression between mean wind and wind gusts could be obtained and used as a first 
attempt to retrieve the wind gusts from the modelled mean wind speed.

Further, a student of the BOKU university has defined a new methodology on how to best 
post-process climate model data to retrieve wind gusts. As there are tight links between AIT and the 
BOKU, discussions are ongoing to share this methodology with AIT and to apply it within ICARIA. 
Another approach will be based on the AI based model weighting, where the available clime 
projections will be combined for an improved representation of hazards.
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4.3 Test C: Drought hazard model to the SAR CS

4.3.1 Summary and objectives of Test C
The objective of this test is focused on meteorological drought assessment through the quantification 
of the historical and projected drought hazard in the SAR region, based on the use of the Standardised 
Precipitation Index (SPI) and frequency distribution diagrams. 

The analysis of drought hazard by using this index is suitable, as SPI  has been used widely in various 
recent drought assessment related studies for evaluating climate change effects on agriculture, 
hydrology, water resources and ecosystems.

Table 6. Test C summary.

Test C summary

Tested tool Drought Hazard model Test responsible DMKTS

Developer of the 
tool DMKTS CS of the test SAR

4.3.2 Activities of Test C
The application of this methodology included primarily the calculation of SPI for the historical and 
future period for selected locations, based on daily precipitation datasets. These climate dataset were 
derived from the climate projections within ICARIA, by the application of statistical downscaling 
method, described in (Blázquez et al. 2024). For the realisation of the test, outputs for specific 
locations of the study area (e.g. Naxos, Kos and Rhodes), were processed accordingly, found here: 
https://intercambio.ficlima.org/indexed/ICARIA/Climate_projections/SAR/

For this trial test, climate datasets from  MRI-ESM2-0, MPI-ESM1-2-HR, and EC-EARTH3, CMIP6 models 
were analysed  for the historical period (1980-2014) and for the future period up to 2050, for SSP245 
and SSP585 scenarios. 

The SPI is calculated by fitting a probability density function to a given frequency distribution of 
precipitation (Faye Cheikh et al. 2019) and then the probabilities are transformed into a normalised 
distribution with a mean equal to zero and a variance of one, developed by Mckee et al. (1993). The 
distribution function used for computing SPI was the 'Gamma' as the most widely used in literature 
and recommended. Moreover, the SPI-6 was selected for drought hazard modelling, as in semi-arid and 
arid regions (as the study area) could give unreliable estimation of drought index computed at shorter 
accumulation periods (Karavitis et al 2014). SPI calculated as follows in the equation:

𝑆𝑃𝐼 =
𝑋

𝐼
−𝑋

𝐽

σ      (𝐸𝑞.  4)
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where, xi refers to the current precipitation in the examined period, xj refers to the mean precipitation 
of the timeseries, and σ refers to the standard deviation of the timeseries. Drought conditions are 
indicated as SPI decreases below ‒1.0, while increasingly severe excess rainfall is indicated as SPI 
increases above 1.0.

Table 7. Drought classifications based on SPI.

Classification SPI Drought classes

1 SPI≥2.00 extreme wet

2 2.00>SPI≥1.50 very wet 

3 1.50>SPI≥1.00 moderate wet 

4 1.00>SPI≥-1.00 normal 

5 -1.00≥SPI>-1.50 moderate drought

6 -1.50≥SPI>-2.00 severe drought 

7 -2.00≥SPI extreme drought 

For data analysis and SPI calculation, the R programming language was used, through the software 
RStudio (Version 1.2.1335), along with the  Standardised Precipitation Evapotranspiration Index  “SPEI” 
package (Vicente-Serrano and Beguería 2010) which encompasses, a set of functions for computing 
potential evapotranspiration and several widely used drought indices including the SPI and SPEI. For 
the comparison of drought conditions among historical and future periods, histograms with dry and 
wet classes were drawn, based on the classification of SPI, as depicted in Table 7. Drought hazard has 
been analysed using SPI data output and frequency distribution diagrams in the R environment.

The following steps are presenting for the finalisation of drought hazard model:

a) Drought assessment for the entire period.

● Calculation of the mean monthly SPI6 as derived from the CMIP6 models for historical and 

future periods (under both SSPs) for the selected location.

● Classification of the index values based on Table 7 drought categories.

● Production of Frequency distribution diagrams.

Or

 b) Drought assessment based on Dry (April to September) and Wet period (October to March), 
according to Hellenic National Meteorological Service (HNMS):

● Selection of SPI6 of March, as represented Index for Wet period.
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● Selection of SPI6 of September, as represented Index for Dry period.

● Calculation of the mean SPI6 as derived from the CMIP6 models for historical and future 

periods (under both SSPs) for the selected location.

●  Classification of the drought values based on Table 7 drought categories.

●  Production of Frequency distribution diagrams

4.3.3 Results of Test C

Drought hazard model is applied in a selected location in Rhodes Island, of the SAR region, as a case 
study of this methodology, examined in the framework of ICARIA.

The following figures 10, 11, and 12 show the classification of SPI6 which is changing under climate 
change scenarios, compared to the historical period by applying a+b methodologies. Consequently, 
the comparison between historical and future periods under different scenarios, is illustrated either by 
the use of methodology (a), that takes into consideration values of drought conditions for the entire 
year, or by applying methodology (b), which reflects the differences on drought conditions during dry 
and wet seasons of each year.  The frequency of  severe drought classes is projected to increase 
under ssp245. On the other hand, increased frequency is observed for moderate and severe wet 
conditions under ssp585. 

Example 1: 3 CMIP6 MODELS RESULTS:

Figure 10.  Example of SPI6 frequency distribution according to each drought class, for the historical 
(red color) and future period under ssp245 (green color) and ssp585 (blue color) for Rhodes.
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Example 2: EC-EARTH3 MODEL RESULTS:

Figure 11.  Example of SPI6 frequency distribution according to each drought class, for the WET 
historical (red color) and future period under ssp245 (green color) and ssp585 (blue color) for Rhodes.

Figure 12  Example of SPI6 frequency distribution according to each drought class, for the DRY 
historical (red color) and future period under ssp245 (green color) and ssp585 (blue color) for Rhodes.

In general, based on the findings of the analysis, it is concluded that there are no detectable barriers 
or gaps present in the analysis. The above methodologies can be applied in both cases of statistical 
and dynamical downscaling. Therefore the drought hazard model analysis may illustrate drought 
conditions of a single point or for a total of gridded points ( e.g. extended area), depending on the data 
availability and downscaling method, for the selected locations for each time period and climate 
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change scenario. The only limitation could be linked to the availability of the number of stations 
providing precipitation data that are considered for the generation of historical and future output of 
different CMIP6 models at the local scale, with the use of statistical downscaling methods.  
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4.4 Test D: Joint probability of occurrence of multi-hazard events

4.4.1 Summary and objectives of Test D
The objectives of this test are focused on the analysis of correlations within the climate data for 
selected compound hazard events across the three case studies to define the joint probability of 
these hazards either occurring simultaneously (compound coincident event) or sequentially 
(compound consecutive event) within a given timeframe.

Table 8. Test D summary.

Test D summary

Tested tool Python Code Test responsible UNEXE

Developer of the 
tool UNEXE CS of the test AMB,SAR,SLZ

4.4.2 Activities of Test D
As part of the Joint Probability assessment for this deliverable one compound hazard type has been 
selected from each of the three case study regions as outlined in Table 9. 

Table 9. Selected compound hazards for joint probability assessment.

Scenario number Hazard 1 Hazard 2 Case Study Region

1 Pluvial Flooding Storm Surge AMB

2 Extreme Wind Flooding SLZ

3 Heatwave Wildfire SAR

Given that the respective climate datasets used to assess joint probability are at a daily resolution, 
the probability of Hazard 1 occurring simultaneously with, or within a specified timeframe of, Hazard 2 
is also defined at a daily resolution, such that it defines the probability that an event will occur on a 
given day. As such, to approximate annual return periods (RPs), there is a need to convert from daily to 
annual probabilities. To do this, a simple mathematical approach has been employed, where once the 
initial probability is defined (P(occuring in a day)) the following 3 steps can be applied to convert to 
annual probabilities 

1. Determine probability of event not occurring on a single day

𝑃(𝑛𝑜𝑡 𝑜𝑐𝑐𝑢𝑟𝑖𝑛𝑔 𝑖𝑛 𝑎 𝑑𝑎𝑦) =  1 −  𝑃(𝑜𝑐𝑐𝑢𝑟𝑖𝑛𝑔 𝑖𝑛 𝑎 𝑑𝑎𝑦)     (𝐸𝑞.  5)

2. Probability of event not occurring on any day within a year
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 𝑃(𝑛𝑜𝑡 𝑜𝑐𝑐𝑢𝑟𝑖𝑛𝑔 𝑖𝑛 𝑎 𝑦𝑒𝑎𝑟) =  𝑃(𝑛𝑜𝑡 𝑜𝑐𝑐𝑢𝑟𝑟𝑖𝑛𝑔 𝑖𝑛 𝑎 𝑑𝑎𝑦)365.25     (𝐸𝑞.  6)

where a year is assumed to be 365.25 days to factor in leap years into the calculation.

3. Probability of occurring at least once in a  year

𝑃(𝑜𝑐𝑐𝑢𝑟𝑟𝑖𝑛𝑔 𝑎𝑡 𝑙𝑒𝑎𝑠𝑡 𝑜𝑛𝑐𝑒 𝑝𝑒𝑟 𝑦𝑒𝑎𝑟) = 1 −  𝑃(𝑛𝑜𝑡 𝑜𝑐𝑐𝑢𝑟𝑖𝑛𝑔 𝑖𝑛 𝑎 𝑦𝑒𝑎𝑟)     (𝐸𝑞.  7)

Scenario 1: Pluvial Flooding and Storm Surge

For an initial assessment of Pluvial Flooding coinciding with Storm Surge events approximations of 
storm surge values vs daily cumulative rainfall is examined. For this test, a rain gauge has been 
selected near to the coastal area along with a corresponding Wave sensor buoy that is in proximity to 
the coast line and the rain gauge (Figure 13). For the climate analysis used within this assessment, a 
single climate model has been chosen,  analysing historical data for the period of 1950 - 2014.

Figure 13. Location of rain gauge and sensor buoy for joint probability assessment.

With downscaled rainfall data being at daily resolution, the following definitions for significant rainfall 
events are being considered:

● Heavy precipitation day ≥ 20mm/day
● Severe heavy precipitation day ≥ 50mm/day
● Extreme precipitation day ≥ 100mm/day

To estimate Storm Surge (SS) values a combination of daily significant wave heights and tide data is 
derived with the following formula:
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𝑆𝑡𝑜𝑟𝑚 𝑆𝑢𝑟𝑔𝑒 (𝑆𝑆)  =  𝑀𝑒𝑡𝑒𝑜𝑟𝑜𝑙𝑜𝑔𝑖𝑐𝑎𝑙 𝑇𝑖𝑑𝑒 (𝑀𝑇) +  𝑊𝑎𝑣𝑒 𝑆𝑒𝑡𝑢𝑝 (𝑆)     (𝐸𝑞.  8)

where wave setup S is given by the approximation from Atkinson et al., (2017):

𝑆~0. 2𝐻
𝑠
     (𝐸𝑞.  9)

where: 

● Hs is the offshore significant wave height

For extreme SS values in this analysis,  the 90th percentile derived from annual maximums has been 
considered. 

With both datasets being at daily resolution for defining compound events, the occurrence of 
significant rainfall events that take place within the region on the same day (overlapping time frames) 
of SS events that are equal to or exceed the 90th percentile value has been examined (Figure 14). In 
this example we can consider the magnitude of a storm surge event varying during the day along with 
the intensity and duration of the rainfall event, therefore from a physical modelling perspective these 
timeframes will need to be considered.

Figure 14. Depicting temporal range of compound Storm Surge and Flood Event.

Scenario 2: Extreme Wind and Flooding

For the modelling of the joint probability of extreme wind and flooding events, the analysis focuses on 
the probability of these events occurring either in the same region either simultaneously or 
sequentially within a specified number of days (N) following an extreme wind event (Figure 15).

Figure 15. Depicting temporal ranges considered from compound wind and flood events.
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Like that defined within scenario 1, the extreme rainfall events are classified in relation to their daily 
recorded values of 20mm/day, 50mm/day, and 100mm/day respectively. For the definition of extreme 
wind events, via discussion with stakeholders, a lower end wind gust speed relating to potential 
damage of trees has been selected with a value of 70 km/hr. As with scenario one, the time frame 
being analysed for this hazard combination is from 1950 - 2014.

With the implications of increased debris within the floodplain during and post event, this assessment 
will consider the probabilities of extreme rainfall coinciding with severe wind events and also 
occurring within a 30 day period of the extreme wind event.

Scenario 3: Heatwave and Wildfire

For this scenario, historical climate data was analysed from EC-EARTH3, models from 1980 to 2014. 

The definition of a heatwave event for this test is defined the 95th percentile for summer months 
June, July, and August were used for during this period as the threshold temperature value whereby if 
said threshold is equal to or exceeded for 3 or more consecutive days then that period of time is 
considered to be a heatwave event (Figure 16).

Within Greece, fire weather season spans from May to October, as such the joint probability 
assessment carried out within this study will be focussed within these months. For defining a 
threshold of “fire danger” based on the Fire Weather Index (FWI) score one can consider either the 
extreme threshold (FWI >= 50) as defined by European Forest Fire Information System (EFFIS) using 
(Van Wagner et al., 1985) study,  or the 90th percentile during the historical fire season. For analytical 
purposes in this assessment an FWI range of 20 (moderate) to 100 (extreme) is being considered.

Figure 16. Depicting temporal ranges considered from compound Heatwave and FWI values.
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4.4.3 Results of Test D

Summary of the main results of the test

Scenario 1: Pluvial Flooding and Storm Surge

Plotting daily rainfall values against maximum record wave height, it is possible to assess if there is 
correlation between the parameters. Figure 17 shows storm surge level estimate vs daily cumulative 
rainfall values and their corresponding marginal distributions. The marginal distributions highlight that 
the majority of days during this period experience no rainfall and that there is a lot of variation in wave 
heights on days where there is no rainfall occurring.

Figure 17. Analysis of Storm Surge level estimates Vs max daily rainfall. 

To assess the joint probability for rainfall and and SS events, the exceedance probability for 
combinations of rainfall and SS values from the historical dataset should be estimated. Converting 
this dataset into a yearly joint probabilistic depiction (Figure 18) shows that heavy rainfall events 
(20mm/day) have an annual probability of occurrence close to 100% though the joint probability of 
such events occurring as storm surge levels increase the joint probability decreases. Analysing the 
joint probability an RP for specified extreme values of the historical data (Table 10) shows that the 
joint probability of SS and extreme rainfall events is not greater than the sum of their independent 
probabilities. 
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Figure 18. Annual probability of compound SS and Rainfall event.

Table 10. Joint probability summary of SS with Daily rainfall.

SS (cm) Rainfall (mm/day) Probability (%) Return Period (Years)

- 20 98.44 1.02

- 50 65.99 1.52

- 100 31.94 3.13

44 - 100.00 1.00

44 20 75.03 1.33

44 50 28.73 3.48

44 100 10.21 9.79

Figures 17 and 18 showed significant variation in SS levels on days with low rainfall with extreme 
rainfall with Figure 17 also highlighting that heavier rainfall days tend to occur on days where storm 
surge estimates are on days where some inland surge occurs. 

Scenario 2: Extreme Wind Vs Extreme Rainfall

Plotting wind speed Vs daily rainfall as shown in Figure 19 reveals that there is some correlation 
between wind speed and daily rainfall with higher recorded precipitation values observed during days 
where wind gust speeds are just below 50 km/hr.
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Figure 19. Analysis of wind speed  Vs max daily rainfall. 

Converting this data into its annual joint probability distribution (Figure 19) highlights the likelihood of 
extreme rainfall values coinciding with extreme wind events.

Figure 20. Annual joint probability of compound extreme wind and rainfall events.
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For the statistical assessment of compound wind and rainfall hazard events, daily resolution wind gust 
data (km/day) and daily cumulative rainfall (mm/day) for a selected area in Salzburg were chosen. 
Through the analysis of this data, the probability of extreme events either occurring on the same day 
or the probability of extreme rainfall occurring within N days of an extreme wind event was assessed. 
Based on these daily probabilities their corresponding annual return periods were calculated. Table 11 
summarises the derived return periods from assessing probability of occurrence for individual and 
compound coincident hazards at a daily resolution. Based on this historical analysis, it has been 
observed that whilst the minimum extreme thresholds are exceeded approximately annually, the 
coincidence of extreme wind and extreme rainfall occurs less frequently.

Table 11. Statistical analysis of compound coincident Wind Gust and Rainfall hazard from 1950 - 2014.

Wind Speed (km/hr) Daily Rainfall 
(mm/day)

Probability (%) Return Period (years)

70 - 98.75 1.01

- 20 100.0 1.0

70 20 45.99 2.17

- 50 87.35 1.14

70 50 4.51 22.17

- 100 14.26 7.0

70 100 0.0 No Occurrence

To assess the probability of extreme rainfall occurring within N days of an extreme wind event, 
iteration through the daily resolution wind gust data to identify days where wind gust speeds equal or 
exceed 70 km/hr has been performed. Using this date at a strat point, it is possible to iterate through 
the days to identify if and when threshold rainfall values are exceeded. Table 12 shows how the 
probability of extreme rainfall events occurring following a.n extreme rainfall event change over time. 
Here it is possible to  observe that as the number of days increases the likelihood of an extreme 
rainfall event occurring does increase.
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Table 12. Statistical analysis of compound consecutive Wind Gust and Extreme Rainfall from 1950 - 
2014.

Wind Speed (km/hr) Daily Rainfall 
(mm/day)

Day between events Return Period (years)

70 20 5 1.46

70 20 10 1.21

70 20 20 1.10

70 20 30 1.06

70 50 5 11.33

70 50 10 9.79

70 50 20 7.73

70 50 30 6.42

70 100 5 65.5

70 100 10 65.5

70 100 20 33.0

70 100 30 33.0

Assessment of this historical data has highlighted that significant rainfall events tend to occur during 
days of relatively high wind gust speeds 50 km/hr and that significant rainfall events within 30 days 
of a severe wind storm event are likely to occur on an annual basis.

Scenario 3: Heatwave and Wildfire

To aid in visualising the potential relationship between heatwaves and FWI scores, the average 3 day 
(minimum duration of heatwave) temperature Vs FWI scores has been plotted for the island of Rhodes 
(Figure 21). Analysis of the FWI Vs temperature data shows an upward trend as average 3 day 
temperature increases. Within this dataset the 95th percentile for temperature value used in defining 
a heatwave was identified as being 32.8’C.
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Figure 21. Example analysis of FWI scores Vs average 3 day temperature for Rhodes.

Through plotting the joint probability distribution of the average 3 day temperature Vs the FWI score 
we see that the annual probability of very extreme Fire Danger class (FWI >= 70) during the summer 
month is very high for a range of temperatures that are below the defined 32.8’C heatwave threshold 
criteria, with fire danger.

Figure 22. Annual joint probability of average 3 day temperature and FWI score.
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Statistical analysis of the FWI score Vs the average 3 day temperature further highlights that extreme 
fire danger conditions within this region are likely an annual occurrence during the summer months.

Table 13.  Statistical analysis of compound heatwave and FWI scores.

Heatwave 95th 
Percentile Temp (C)

FWI Probability (%) Return Period (years)

32.8 - 96.15 1.04

- 20 100.0 1.0

32.8 20 96.15 1.04

- 50 96.15 1.04

32.8 50 96.15 1.04

- 70 100.0 1.0

32.8 70 91.74 1.09

- 100 100.0 1.0

32.7 100 64.10 1.56

Based on the initial joint probability assessment of historical data from the Rhodes region we observe 
that there is a high likelihood of fire danger weather on an annual basis within the region that 
coincides with heatwave events however we also observe that heat waves themselves are not the 
primary driving factor in fire danger weather with high FWI scores featuring at lower temperature 
thresholds.

4.4.4 Summary of Test D
Visualising the joint probability distributions of compound hazard events highlights that for specified 
probabilities and respective return periods there exists a range of possible hazard combinations. For 
example, Figure 20 shows that for a compound extreme wind and rainfall event with a joint probability 
of 10% (1 in 10-year event) can be comprised of a range of values. This poses a challenge from the 
modelling perspective in terms of selection of input hazard parameters. Potential solutions for this 
could be the selection of respective median and 90th percentile values of the hazard values. Tables 14 
and 15 show these values when considering wind speeds equal to or above the threshold 70 km/hr. 
Here we see that from the historical dataset we derive three unique compound hazard combinations 
that each correspond to a 1 in 10 year return period.
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Table 14. Compound hazard combinations when deriving median and 90th percentile values from Wind 
speed

Wind Speed (km/hr) Rainfall (mm/day)

Median 109.25 13.14

90th Percentile 140.65 0.0

Table 15. Compound hazard combinations when deriving median and 90th percentile values from 
rainfall

Wind Speed (km/hr) Rainfall (mm/day)

Median 109.25 13.14

90th Percentile 76.26 29.88

An additional challenge in analysing such datasets relating to compound hazards, may relate to the 
rarity of such events when they are correlated within the tail end extremes. A couple of approaches for 
dealing with this limitation are the inclusion of more data from a range of climate models and SSPs to 
create a more robust climate dataset for analysis of joint probability and estimating uncertainty. A 
secondary approach would be to further analyse the dependencies between hazard drivers such as by 
the use of Copula as highlighted in Couasnon et al. (2018), whereby synthetic data can be generated 
via analysis of coupled datasets and their respective marginal distributions.

D2.5 - WP2 lab: testing of methods and tools                                                                                                          44



4.5 Test E: Heat wave hazard model on the electricity sector

4.5.1 Summary and objectives of Test E
The objective of test E has focused on analysing the effect of rising temperatures and heat waves and 
their interaction with the power grid model located in the AMB. The test refers to climate hazards on 
electrical grids and related impacts. For this reason, it can be considered a test that assesses both. Its 
objectives are to analyse how the data and information relevant to this study are received and 
processed, as well as how to process this information and match it with one of the critical 
infrastructures of the project.

This test has been selected because, in the AMB, similar studies have already been done with the 
flood hazards of the territory trial, such as in RESCCUE project (Russo et al., 2020)). In addition, 
among the AMB mini-trials, the one with the highest impact on the power grid is the heat wave.

The test aims to streamline two fundamental processes for future project packages: the first is the 
processing of climate data and the second is the design of the power grid model, which is the basis 
for seeing how the other hazards will impact the grid.

Table 16. Test E summary.

Test E summary

Tested tool QGIS and Python as tools 
for impact quantification Test responsible IREC, AQUA, AMB

Developer of the 
tool IREC CS of the test AMB

4.5.2 Activities of Test E
The requirements for the assessment of hazard and impacts of a heat wave in the electrical sector of 
AMB are related to meteorological data and electrical grid data. The starting point of the 
meteorological data for the test is the historical data of the weather stations. These data consist of 
the periods of heat waves in the AMB and contain the location of the stations and the temperature 
measured every half an hour. From these data, temperatures are interpolated for each specific time 
and weather station to obtain a more extensive map of the heat wave.
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Figure 23. Meteorological stations with the heatwave data of the AMB region.

For the electricity grid model, the open data from the Open Street Maps platform is used. This data is 
subject to change in future project tasks when more detailed data is obtained from a local 
stakeholder. Furthermore, the electrical model is simplified by using only those elements directly 
affected by heat waves, such as overhead lines and electrical substations, as shown in Figure 24.

Figure 24. Georeferenced power grid with zoom to Rubi substation. 
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One reason why the model is simplified is that the data from the open source is not optimal for doing 
studies of power flow since the provided data is meant to give the georeferenced elements and their 
link with some relevant data, such as the voltage of the electric lines. In addition, the missing 
elements of the grid and the data's format make it incompatible with power flow programs. However, 
through the QGIS program and transforming the electrical network into the pandapower Python library 
(Thurner et al., 2018). Pandapower is an open-source code capable of power system modelling and 
analysis. It is composed of parametrized electric models of electrical elements, such as lines or 
transformers, that can be freely modified and customised. Furthermore, the power system analysis 
supports the power flow simulation. With these two aspects in mind, some crucial grid element 
models, such as the external electrical grid or the loads, have been added to the initial data, and it has 
been obtained a network with the necessary elements capable of making a power flow with and 
without taking into account the impacts of the heat wave as shown in Figure 25.  

Figure 25. Pandapower model of the electrical network with its elements.

Once the power grid model and heatwave maps are ready, the information from both are 
cross-referenced to calculate the impacts of the hazard. It is done by assigning the temperature 
information of the heat wave to the electrical grid elements. In the case of the point elements  (as it 
could be the consumption points), the temperature assigned is the one that overlaps with the model in 
the map. In contrast, in the case of lines, each line is assigned the average temperature that the line is 
stressed by. The equations defined and used for count the impact to the electric grid are the following 
ones collected in Deliverable 3.1 (Guerrero et al., 2024):
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● Electricity demand: According to (Allen et al., 2016), the demand side of the power system 
changes due to two parameters during a heat wave event: the temperature and the latitude 
where the consumption is. In the formula, J represents the percentage increase in electricity 
demand, LCentroid denotes the latitude in decimal degrees at the territory’s centroid, and ∆T 
stands for the change in maximum annual temperature. The equation that defines it, is the 
following one:

𝐽 = 9. 594 − 0. 1206·𝐿
𝐶𝑒𝑛𝑡𝑟𝑜𝑖𝑑( )·∆𝑇

𝐶
     (𝐸𝑞.  10)

The total demand of the territory (D) is the calculation of the average customer demand (Davg) 
multiplied by the total number of customers (N) in it, and considering the percent increase of 
the demand due to the temperature rise and the latitude of the territory (J).

𝐷 = 𝐷
𝑎𝑣

·𝑁· 1 + 𝐽
100( )     (𝐸𝑞. 11)

● Overhead lines: (Choobineh et al., 2016) approximated this equation for aluminium conductors 
steel reinforced (ACSR), which are most commonly used in overhead lines, and derived Eq.12. It 
represents how the power of the line decreases from 25ºC upwards.

∆𝑃
𝑏,𝑇
𝐿𝑖𝑛𝑒,𝑚𝑎𝑥 =− 0. 768·𝑇

𝑡
𝑎 + 119. 45     (𝐸𝑞. 12)

When subjected to an increase in electrical current, these lines may experience failures. (Lee 
et al., 2018) and (Bhatt et al., 2009) presented a fragility curve that relates how loaded the line 
is operating and the probability of that line failing; Figure 26 displays the results.

Figure 26. Fragility curve of how likely the line is to fail as a function of the load it supports.

● Substation power: for approximating the behaviour of the substation power, the results of 
(Hashmi et al., 2008) are taken as a reference. The study provides the relationship and how 
the capacity of the transformer varies by taking the ambient temperature as a reference.

∆𝑃
𝑇
𝑡_𝑝𝑜𝑤𝑒𝑟 =− 0. 0098·𝑇

𝑡
𝑎 + 1. 1961     (𝐸𝑞.  13)
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4.5.3 Results of Test E
To achieve results on the heat wave hazard and related impacts, the power grid is simulated with and 
without considering the ambient temperature of the elements. One of the assumptions is that the 
external energy arriving outside the AMB region is sufficient to supply the demand. A first simulation 
is done to take it as reference and to check the module works properly, as shown in Figure 27. 

 

Figure 27. Power flow simulated without considering HW. 

Once the first simulation with the nominal parameters of the grid is finished, a second simulation is 
done, taking into account the temperature they are stressed. Tables 17, 18, and 19 show how the 
capacity changes for the electrical elements in both simulations. It can be seen how the demand 
increases with more heat and conversely how the capacity of the electrical elements decreases with 
this increase. And Figure 28 shows the results of the simulation considering HW.

Table 17. Comparing the electricity demand and their change in both simulations.

Electricity demand Active power Temperature New active power

[∅] [MW] [ºC] [MW]

Sant Feliu de Guíxols 12.12 36.15 12.75

Sant Feliu de Guíxols 2 2.86 36.92 3.11

Santa Coloma de Gramenet 22.62 35.39 23.02
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Table 18. Comparing six overhead lines of different voltages and stressed by different temperatures, 
their change in capacity for both simulations.

Lines Maximum current Temperature New maximum current

[kV] [kA] [ºC] [kA]

400 0.8067 41.08 0.71

400 0.8067 40.3 0.71

220 0.574 39.70 0.51

220 0.574 35.38 0.53

66 0.431 41.02 0.38

66 0.431 36.92 0.39

Table 19. Comparing the power substation and their change in both simulations.

Electricity demand Capacity Temperature New Capacity

[∅] [MVA] [ºC] [MVA]

TR_Rubi1 600 41.05 378.10

TR_Rubi2 600 41.05 378.10

TR_Rubi3 100 40.93 79.50

TR_Sant_Just 100 36.21 84.12

Figure 28. Power flow simulated considering HW.
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The challenges faced along the test are related to the electricity model itself. The open data service has 
relevant information, such as the geographical location of some parts of the grid within their technical 
data. However, as mentioned before, it is not prepared for power flow simulation; this implies that it has to 
be transformed, and some assumptions have to be made. Even so, it has been enough to see how the 
heat wave map interacts with the model as well as to test the impact it would have on the electricity 
system.

Meanwhile, the interaction between meteorological data and the electricity model is straightforward 
since both are georeferenced. The transfer of information between them can be efficiently done with GIS 
software as it is QGIS.
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4.6 Test F: Hazard assessment for Wildfire and Drought compound event to the 
SAR CS

4.6.1 Summary and objectives of Test F

The objective of Test F has been focused on a methodology that is based on the coincidence of dry 
conditions with extreme fire weather danger within a given timeframe, by investigating the statistics 
of corresponding indices that quantify each of the examined hazards for the SAR case study.

Regions prone to wildfire disasters, as SAR in the Mediterranean, are most likely to experience fire 
weather years preconditioned by drought (Richardson et al 2022). The prolonged low precipitation 
periods, commonly referred to as meteorological drought, increase the risk of forest fire events. 
Consequently, it is important to investigate the combination of dry conditions with high fire danger 
values.

Table 20. Test F summary.

Test F summary

Tested tool Compound hazards of 
Drought and Wildfire Test responsible DMKTS

Developer of the 
tool DMKTS CS of the test SAR

4.6.2 Activities of Test F

For the conduction of trial Test F, it is primarily necessary the calculations of Standardised 
Precipitation Index (SPI) and Fire Weather Index (FWI) indices for the historical and future period for 
selected locations, based on daily precipitation, maximum temperature, relative humidity and wind 
gust datasets. These climate datasets were derived from the climate projections within ICARIA, by the 
application of statistical downscaling methodology (Blázquez et al., 2024). For the realisation of the 
trial, outputs for the Island of  Rhodes were processed and can be, found here:

 https://intercambio.ficlima.org/indexed/ICARIA/Climate_projections/SAR/

For this trial test, climate datasets from  MRI-ESM2-0, MPI-ESM1-2-HR, and EC-EARTH3, CMIP6 models 
were analysed for the historical period (1980-2014) and for the future period up to 2050, under 
SSP245 and SSP585 scenarios. 

a) SPI6 calculation

The SPI is calculated by fitting a probability density function to a given frequency distribution of 
precipitation and then the probabilities are transformed into a normalised distribution with a mean 

D2.5 - WP2 lab: testing of methods and tools                                                                                                          52



equal to zero and a variance of one, developed by Mckee et al. (1993). The distribution function used 
for computing SPI was the 'Gamma' as the most widely used in literature and recommended. Moreover, 
the SPI-6 was selected for drought hazard modelling, as in semi-arid and arid regions (as the study 
area), drought index computed at shorter accumulation periods could give unreliable estimates 
(Karavitis et al 2014). SPI calculated as follows in the equation:

𝑆𝑃𝐼 =
𝑋

𝐼
−𝑋

𝐽

σ      (𝐸𝑞.  14)

where, xi refers to the current precipitation in the examined period, xj refers to the mean precipitation 
of the time series and σ refers to the standard deviation of the timeseries. Drought classification is 
provided in Table 21. Moreover, drought conditions are indicated as SPI decreases below ‒1.0, while 
increasingly severe excess rainfall is indicated as SPI increases above 1.0. To calculate the SPI, the R 
software was used, the “SPEI” package.

        Table 21. Drought classifications based on SPI.

Classification SPI Drought classes

1 SPI≥2.00 extreme wet

2 2.00>SPI≥1.50 very wet 

3 1.50>SPI≥1.00 moderate wet 

4 1.00>SPI≥-1.00 normal 

5 -1.00≥SPI>-1.50 moderate drought

6 -1.50≥SPI>-2.00 severe drought 

7 -2.00≥SPI extreme drought 

b) FWI calculation

The Fire Weather Index (FWI) System is one of the two major subsystems of the Canadian Forest Fire 
Danger Rating System (CFFDRS). Their analytical presentation of the system equations and numerical 
codes describing the structure and components (see Figure 29) of the FWI System can be found in van 
Wagner and Pickett (1984). The higher the FWI is, the more favourable the meteorological conditions to 
trigger a wildfire. For each year, the fire season has length from May to October (officially in Greece) 
for FWI calculations. The calculation of the values of the Canadian FWI was performed using the 
package CFFDRS (https://r-forge.r-project.org/projects/cffdrs/) of R statistical computing software 
using as input four weather variables at 12:00 hours: temperature at 2m, relative humidity, wind speed 
at 10m, and daily precipitation.
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Figure 29. Structure of the FWI System 
(https://cwfis.cfs.nrcan.gc.ca/background/summary/fwi).

 
The Fine Fuel Moisture Code (FFMC) is a numeric rating of the moisture content of litter and other 
cured fine fuels. This code is an indicator of the relative ease of ignition and the flammability of fine 
fuel. The Initial Spread Index (ISI) is a numeric rating of the expected rate of fire spread. It is based on 
wind speed and FFMC. Like the rest of the FWI system components, ISI does not take fuel type into 
account. Actual spread rates vary between fuel types at the same ISI.

Table 22. Fire Weather Classification classes according to EFFIS (source 
https://forest-fire.emergency.copernicus.eu/about-effis/technical-background/fire-danger-forecast).

Fire Danger Classes FWI FFMC ISI

Low <11.2 < 86.1 < 5.0

Moderate 11.2 - 21.3 86.1 - 89.2 5.0 - 7.5

High 21.3 - 38.0 89.2 - 93.0 7.5 - 13.4

Very High 38.0 - 50 >=93.0 >=13.4

Extreme 50-70   

Very Extreme >= 70
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c) Compound event during Fireseason

● Calculation of the monthly SPI6 as derived from the CMIP6 models for historical and future 
periods (for the selected SSPs) for the selected location.

● Calculation of the daily FWI as derived from the CMIP6 models for historical and future periods 
(for the selected SSPs) for the selected location.

● Common period for analysing the two indices: May to October

o   Extraction of SPI6 of October values, for each year, which represent the drought 
conditions of the entire fireseason.

o   Selection of drought years, based on the definition of drought conditions (-1.00≥SPI) 
of Table 22.

o Statistical analysis and comparison of the extreme and mean values of the 
fire-related indices during these years in the historical (1980-2014) and future 
period (2015-2050) under SSPs:

➔ Threshold of 90th percentile of FWI, ISI and FFMC
➔ Number of very extreme fire days with FWI > 70.
➔ Mean of FWI, FFMC and ISI

4.6.3 Results of Test F

Table 23 outlines the 90th percentile and the mean FWI values, along with the number of  very extreme 
fire danger (FWI>70), according to EFFIS, only for the drought years and how these values are projected 
to change in the future under SSP245 and SSP585 in the island of Rhodes. Similar results are illustrated 
in Table 24 for the sub-components FFMC and ISI.
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Example: 3 CMIP6 MODELS  RESULTS:

Table 23. Drought and Wildfire: FWI statistical results derived from models for the historical period and 
the future under SSP245 and SSP585 for Rhodes, during drought years.

INDEX: FWI FWI 90th Percentile FWI mean Number of days > 70

Historical 93.72 55.44 50.52

SSP245 91.72 58.26 52.72

SSP585 99.44 59.29 58.36

Table 24.  Drought and Wildfire:  ISI and FFMC statistical results derived from models for the historical 
period and the future under SSP245 and SSP585 for Rhodes, during drought years.

FFMC and ISI ISI 90th Percentile ISI mean FFMC 90th Percentile FFMC mean

Historical 42.81 21.52 90.77 87.57

SSP245 40.78 21.88 91.44 88.18

SSP585 46.60 23.51 91.23 88.04

 

Overall, the results indicated that during dry years, a moderate increase is observed in the statistics 
of the examined fire weather components under different SSPs, mainly under SSP585. In general, 
based on the findings of the analysis, it is concluded that there are no detectable barriers or gaps 
present in the analysis. Moreover, the above methodology can be applied in both cases of statistical 
and dynamical downscaling. Therefore the compound events hazard model analysis may illustrate the 
change signal based on the coincidence of dry conditions with extreme fire weather danger, within a 
given timeframe, for a single point or for a total of gridded points ( e.g. extended area), depending on 
the data availability and downscaling method, for the selected locations. The only limitation could be 
linked to the availability of the number of stations providing wind speed/gust data considered for the 
application of statistical downscaling and therefore the generation of historical and future output 
timeseries of different CMIP6 models at the local scale for a single point/location, and in turn with the 
efficient calculation of FWI index and its subcomponents.  Consequently, data provision imposes 
constraints on the assessment.
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5 Conclusions

To conclude the task, the document aimed to validate different methodologies proposed in the framework 
of WP2. In order to accomplish this, six different tests have been performed for the three distinct regions 
of the project (AMB, SAR, and SLZ). These tests have been centred on analysing the dynamics and 
evaluating the consequences of climate hazards (tests A, B, C, and E). Furthermore, quantify the 
likelihood of compound hazard events,  either coincident or consecutive (Tests D and F).

The first three tests, A, B, and C, have focused on the application of a single hazard model for a specific 
region. Each region has selected the hazard model considering their expertise and choosing one that has 
to be implemented in future project tasks, and at the same time, it has been tested very little, or never, in 
the region. 

Thus, test A has consisted of the development of the Heat Island Hazard model for the AMB to analyse 
the effect of the increasing temperatures and heat waves. The test has obtained several results. The first 
one is the LST maps that help in the identification of the hot and cold spots of the region. The second 
one is the obtention of the vulnerability index and the selection of the critical areas distinguishing the 
census sections of the AMB. The last one is the result of a simplified part of the city map where, with the 
implementation of the SOLWEIG model, the test gets the Urban Heat Island temperatures. The test faced 
some barriers such as the need to evaluate night temperatures for UHI analysis and the limitation of 
using high-resolution nighttime images, leading to the use of Landsat daytime images for detailed urban 
impact assessment. Additionally, the search for disaggregated and up-to-date socioeconomic data for 
vulnerability analysis was challenging, with the most recent data being from 2021.

Test B has focused on the analysis of extreme wind hazard models for the SLZ region. The results 
conclude that the statistical reduction of wind gusts is handicapped by the scarcity of observational 
data, which leads to high uncertainty, especially in topographically complex areas such as Salzburg. 
Future models suggest weaker wind gusts, but their reliability is questionable. Dynamic downscaling also 
faces challenges due to errors in historical data and a lack of detailed wind information in the CHELSA 
dataset. Improvements are being sought through new post-processing methodologies and AI-based 
model weighting. The SLZ second CoP meeting highlighted the impact of wind speeds and directions on 
damage, highlighting the difficulty of accurately modelling local wind effects in complex terrain.

In the case of Test C, the hazard model implemented for the SAR region is the Drought Hazard model and 
has been applied to Rhodes Island. It evaluates the drought models CMIP6 and EC-EARTH3. The results 
obtained from the test are the frequency distribution of the drought classification periods (classified 
based on the SPI value) of the historical data and the future scenarios ssp245 and ssp585. Moreover, for 
the EC-EARTH3, the drought assessment has been divided into a dry period (April to September) and a 
Wet period (October to March) to get more detailed information. The outcomes show that under ssp245, 
severe drought classes are projected to increase the frequency of occurrence.

For Test D, all three CS have been considered. The test consists of correlation analysis within the climate 
data for selected compound hazard events to define the joint probability of these hazards, either 
simultaneously (compound coincident event) or sequentially (compound consecutive event) within a 
given time frame. Differently, from the first three tests, the hazards selected to conduct Test D have no 
restriction, even though they have been studied individually on other projects since no previous studies 
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were done, considering them happening simultaneously or sequentially. Therefore, in the AMB scenario, 
the hazards considered have been pluvial flooding and storm surges. In the SLZ scenario, it treated 
extreme wind and flooding, and in the SAR scenario, the hazards considered are heatwave and wildfire.

The results in Test D show the correlation between the main variables of the hazards under study for the 
three scenarios. In the AMB and SLZ cases, it is presented the return period of the two risks for each 
scenario to happen coincidentally. Moreover, for the SLZ case, it calculates with the use of the historical 
data the likelihood of having the extreme wind and flooding consecutively, giving the return period of 
having both hazards successive, considering the days between both events. For the SAR case, the initial 
joint probability assessment of historical data from the Rhodes region indicates a high likelihood of fire 
danger weather on an annual basis coinciding with heatwave events. However, it also reveals that heat 
waves are not the primary driving factor in fire-danger weather, as high FWI scores occur at lower 
temperature thresholds.

Test E has focused on the crossing of heat wave hazards with one of the assets of interest in the project, 
which is the electrical grid. The results show that the combination of meteorological data with power grid 
model data is a relatively straightforward process with the use of GIS software due to both being 
geo-referenced. Furthermore, it has served as a test for hazard and impact assessment. 

Test F has developed and analysed the compound wildfire and drought hazard to the SAR CS, specifically 
on Rhodes Island. The methodology is based on the coincidence of drought conditions with the extreme 
meteorological danger of fire at a given time. The results show the 90th percentile and the mean FWI, 
FFMC, and ISI values, along with the number of very extreme fire danger (FWI>70), only for the drought 
years and how these values are projected to change in the future under SSP245 and SSP585. 

Overall, through the tests performed in the deliverable, it has been possible to validate most of the 
methodologies proposed in Work Package 2 in certain regions with little experience with them, along with 
their connection with the other work packages. In addition, these tests have helped identify possible 
barriers to be encountered in the following tasks and provided a basis from which to proceed. 
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Annex A: Data Management Statement

Table A.1. Data used in preparation of ICARIA Deliverable 2.5.

Dataset 
name

Format Size Owner and re-use 
conditions

Potential utility 
within and outside 
ICARIA

Unique ID

na na na na na na

Table A.2. Data produced in preparation of ICARIA Deliverable 2.5.

Dataset 
name

Format Size Owner and re-use 
conditions

Potential utility 
within and outside 
ICARIA

Unique ID

na na na na na na
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